110 research outputs found

    Multifractals via recurrence times ?

    Full text link
    This letter is a comment on an article by T.C. Halsey and M.H. Jensen in Nature about using recurrence times as a reliable tool to estimate multifractal dimensions of strange attractors. Our aim is to emphasize that in the recent mathematical literature (not cited by these authors), there are positive as well as negative results about the use of such techniques. Thus one may be careful in using this tool in practical situations (experimental data).Comment: This is a very short and non-technical note written after an article published in Nature by T.C. Halsey and M.H. Jense

    Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

    Full text link
    We consider two dimensional maps preserving a foliation which is uniformly contracting and a one dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for the Poincare maps of a large class of singular hyperbolic flows. From this we deduce logarithm laws for these flows.Comment: 39 pages; 03 figures; proof of Theorem 1 corrected; many typos corrected; improvements on the statements and comments suggested by a referee. Keywords: singular flows, singular-hyperbolic attractor, exponential decay of correlations, exact dimensionality, logarithm la

    An elementary approach to rigorous approximation of invariant measures

    Full text link
    We describe a framework in which is possible to develop and implement algorithms for the approximation of invariant measures of dynamical systems with a given bound on the error of the approximation. Our approach is based on a general statement on the approximation of fixed points for operators between normed vector spaces, allowing an explicit estimation of the error. We show the flexibility of our approach by applying it to piecewise expanding maps and to maps with indifferent fixed points. We show how the required estimations can be implemented to compute invariant densities up to a given error in the L1L^{1} or LL^\infty distance. We also show how to use this to compute an estimation with certified error for the entropy of those systems. We show how several related computational and numerical issues can be solved to obtain working implementations, and experimental results on some one dimensional maps.Comment: 27 pages, 10 figures. Main changes: added a new section in which we apply our method to Manneville-Pomeau map

    Arnold maps with noise: Differentiability and non-monotonicity of the rotation number

    Full text link
    Arnold's standard circle maps are widely used to study the quasi-periodic route to chaos and other phenomena associated with nonlinear dynamics in the presence of two rationally unrelated periodicities. In particular, the El Nino-Southern Oscillation (ENSO) phenomenon is a crucial component of climate variability on interannual time scales and it is dominated by the seasonal cycle, on the one hand, and an intrinsic oscillatory instability with a period of a few years, on the other. The role of meteorological phenomena on much shorter time scales, such as westerly wind bursts, has also been recognized and modeled as additive noise. We consider herein Arnold maps with additive, uniformly distributed noise. When the map's nonlinear term, scaled by the parameter ϵ\epsilon, is sufficiently small, i.e. ϵ<1\epsilon < 1, the map is known to be a diffeomorphism and the rotation number ρω\rho_{\omega} is a differentiable function of the driving frequency ω\omega. We concentrate on the rotation number's behavior as the nonlinearity becomes large, and show rigorously that ρω\rho _{\omega } is a differentiable function of ω\omega , even for ϵ1\epsilon \geq 1, at every point at which the noise-perturbed map is mixing. We also provide a formula for the derivative of the rotation number. The reasoning relies on linear-response theory and a computer-aided proof. In the diffeomorphism case of ϵ<1\epsilon <1, the rotation number ρω\rho_{\omega } behaves monotonically with respect to ω\omega . We show, using again a computer-aided proof, that this is not the case when ϵ1\epsilon \geq 1 and the map is not a diffeomorphism.Comment: Electronic copy of final peer-reviewed manuscript accepted for publication in the Journal of Statistical Physic

    Recurrence and algorithmic information

    Full text link
    In this paper we initiate a somewhat detailed investigation of the relationships between quantitative recurrence indicators and algorithmic complexity of orbits in weakly chaotic dynamical systems. We mainly focus on examples.Comment: 26 pages, no figure

    A "metric" complexity for weakly chaotic systems

    Full text link
    We consider the number of Bowen sets which are necessary to cover a large measure subset of the phase space. This introduce some complexity indicator characterizing different kind of (weakly) chaotic dynamics. Since in many systems its value is given by a sort of local entropy, this indicator is quite simple to be calculated. We give some example of calculation in nontrivial systems (interval exchanges, piecewise isometries e.g.) and a formula similar to the Ruelle-Pesin one, relating the complexity indicator to some initial condition sensitivity indicators playing the role of positive Lyapunov exponents.Comment: 15 pages, no figures. Articl

    Khinchin theorem for integral points on quadratic varieties

    Full text link
    We prove an analogue the Khinchin theorem for the Diophantine approximation by integer vectors lying on a quadratic variety. The proof is based on the study of a dynamical system on a homogeneous space of the orthogonal group. We show that in this system, generic trajectories visit a family of shrinking subsets infinitely often.Comment: 19 page

    Anomalous time-scaling of extreme events in infinite systems and Birkhoff sums of infinite observables

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Institute of Mathematical Sciences via the DOI in this recordWe establish quantitative results for the statistical behaviour of infinite systems. We consider two kinds of infinite system: i) a conservative dynamical system (f, X, µ) preserving a σ-finite measure µ such that µ(X) = ∞; ii) the case where µ is a probability measure but we consider the statistical behaviour of an observable φ: X → [0, ∞) which is non-integrable: R φ dµ = ∞. In the first part of this work we study the behaviour of Birkhoff sums of systems of the kind ii). For certain weakly chaotic systems, we show that these sums can be strongly oscillating. However, if the system has superpolynomial decay of correlations or has a Markov structure, then we show this oscillation cannot happen. In this case we prove a general relation between the behavior of φ, the local dimension of µ, and the scaling rate of the growth of Birkhoff sums of φ as time tends to infinity. We then establish several important consequences which apply to infinite systems of the kind i). This includes showing anomalous scalings in extreme event limit laws, or entrance time statistics. We apply our findings to non-uniformly hyperbolic systems preserving an infinite measure, establishing anomalous scalings for the power law behavior of entrance times (also known as logarithm laws), dynamical Borel–Cantelli lemmas, almost sure growth rates of extremes, and dynamical run length functions.Engineering and Physical Sciences Research Council (EPSRC)GNAMPA-INdAMUniversity of PisaUniversity of HoustonInstitut Mittag-LefflerNSFCUniversity of WarwickUniversity of ExeterCentre Physique Theorique, Marseill
    corecore